

WPG550F8

DIESEL GENERATING SET

ENERATING SET RATINGS 50Hz - 1500rpm @ 0.8p.f.

oltage	PRP		ESP	
V	kVA	kWe	kVA	kWe
415/240	500	400	550	440
400/230	500	400	550	440
380/220	500	400	550	440

PRODUCT FEATURES

Engine

- •Cast iron frame style body structure
- One-piece forged crankshaft
- Split-cap forged steel connecting rods
- ·Separate cast iron cylinder heads with 4 valves
- •Replaceable dry cylinder liners
- ·Aluminum alloy pistons with oil cooling gallery

Cooling system

- •Radiator and hoses supplied separately
- •Thermostatically-controlled system with belt driven coolant pump and pusher fan

Fuel system

- •High pressure Common Rail injection system
- Duplex fine filter and water separation filter assembly with transparent cup for better efficiency

Lubrication system

- •Flat bottom large capacity oil pan
- •Spin-on full-flow lube oil filter

Electrical system

- •24 Vdc electric starter motor and battery charging alternator
- LOP + HWT sensors

Air intake and exhaust system

- · Mid-position and below inlet turbocharger optimized or genset application
- Special rear mounted air filter with restriction indicator
- · Exhaust manifold shield for heat isolating

Alternator

- •Brushless, 4 Pole, IP23 drip-proof revolving field design
- Class H insulation and Class H temperature rise
- •Low reactance with 2/3 pitch windings on the stator
- •Direct-coupled by flexible disc
- •Sustained overcurrent >300% in 10 sec
- Direct drive centrifugal blower fan cooling

Control module

- •Deepsea control module is ideal for a wide control range to manage, monitor, and diagnose quickly and
- •Display status message Provide protection Auto shutdown at fault detection

Brand	WEICHAI
Model	WPG550F8
Governor and regulation class	In accordance to ISO 8528-5 Class G2 performance
Phase number and connection	3 phase, 4 wires, Y-type
Cooling method	Closed looped water-cooled
Starting method	DC 24V Electric starter
Steady-state voltage deviation	≤± 1%
Steady-state frequency band	≤1%

ENGINE		
Brand		BAUDOUIN
Model		6M21G550/5
Gross Power	kWm	ESP - 490 / PRP - 450
Cylinder / Type / Aspiration		6 / In-line / Turbocharged and Aftercooled
Bore x Stroke	mm	127 x 165
Displacement	L	12.54
Compression ratio		15.2:1
Brake Mean Effective Pressure	kPa	ESP - 3126
Governor		Electronic

EXHAUST SYSTEM		
Exhaust Gas temperature after the turbocharger	°C	580
Exhaust Gas flow	m³/min	ESP - 114.8/ PRP - 102.3
Max. Exhaust back pressure	mBar	120
Max. Exhaust back pressure	mBar	120

	Liquid (water + 50% antifreeze)
L	62
°C	105
m³/min	474
_	-

Operating Temperature range before Engine	°C	78 -105
Oil fuel consumption ratio based on engine fuel consumption data	g/kW.hr	≤ 0.2%
Total system capacity (including filters)	L	38
Type of oil filter		Spin-on full flow filter

Type of fuel filter		Spin-on fuel filter
Min. internal diameter of the supply pipe	mm	14
Min. internal diameter of the return pipe	mm	14
Max. fuel return restriction	Bar	0.5
Max. fuel inlet temperature	°C	50
Fuel supply flow	L/hr	400
Fuel Consumption (Tolerance +3%)		
Rating	gr/kWh	L/hr
100%ESP	211	123.1
100%PRP	204.3	109.5
75% PRP	187.3	75.3
50% PRP	190.5	51
25% PRP	207.5	27.8

ALTERNATOR	
Brand	WEICHAI
Model	WHA-500-4/0.4
Rated Current	722A
Coupling / No. of Bearing	Direct / Single
Winding Pitch	2/3
Type of Excitation	Self-excitation
Cooling type	Air
Voltage regulation method	AVR
Insurance	Class H
Temperature rise	Class H
Protection Grade	IP23
Efficiency at 0.8p.f.@100% load	94.4%

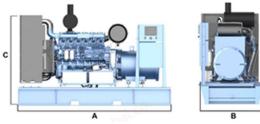
CONTROL MODULE

The Deepsea controller, model DSE7320 MKII is an is an Auto Mains Failure Control Module

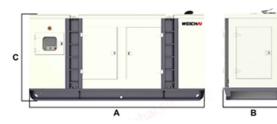
- LCD alarm indication, multilingual interface
- Fully configurable via PC using USB, RS232, RS485 and ethernet communication.
- Collects and shows 3-phase voltage, current, power parameter and frequency of generator or mains.
- Over current protection
- Modules can be integrated into building management systems (BMS) using MODBUS RTU & TCP
- Hours counter provides accurate information for monitoring and maintenance period
- PLC editor allows user configurable functions to meet user specific application requirements

Ratings definitions

Emergency Standby Power (ESP):


Emergency Standby Power is the maximum power available for a varying load for the duration of a main power network failure. The average load factor over 24 hours of operation should not exceed 70% of the engine's ESP power rating.

Typical operational hours of the engine are 200 hours per year, with a maximum usage of 500 hours per year. This includes an annual maximum of 25 hours per year at the ESP power rating. No overload capability is allowed. The engine is not to be used for sustained utility paralleling applications.


Prime power (PRP):

Prime Power is the maximum power available for unlimited hours of usage in a variable load application. The average load factor should not exceed 70% of the engine's PRP power rating during any 24 hour period. An overload capability of 10% is available; however, this is limited to 1 hour within every 12 hour period.

Open genset

Silence genset

This outline drawing is to provide representative configuration details for Model series only.

See respective model data sheet for specific model outline drawing number.

Do not use for installation design

Dimension and Weight

Structure	Model	Dim "A" mm	Dim "B" mm	Dim "C" mm	Dry wt.* kg	Fuel tank L
Open	WPG550F8	3200	1396	2024	3280	450
Enclosure	WPG550F8	4500	1480	2400	4000	1000

^{*} Note: Weights represent a set with standard features. See outline drawings for weights of other configurations.

Codes and standards

ISO 9001	This generator set is designed and manufactured in facilities certified to ISO 9001.	ISO 8528	This generator set has been designed to comply with ISO 8528 regulation.
ISO14001	This generator set is designed and manufactured in facilities certified to environment management system ISO 14001.	CE	The CE marking is only valid when equipment is used in a fixed installation application. Material compliance declaration is available upon request.
ISO45001	This generator set is designed and manufactured in facilities certified to OHSMS management system ISO 45001	TLC	This generator set has been certified according to YD/T502-2020 standard

Specifications are subject to change without notice.

For more information contact your local Weichai distributor or visit www.weichai.com

Contact information:

Weichai Vietnam CO., Ltd

Hanoi Office: R1703, 17fl, Charm Vit Tower, 117 Tran Duy Hung, Cau Giay Dist, Hanoi

HCM Office: R702, Dai Minh Convention Tower, 77 Hoang Van Thai, Tan Phu Ward, Dist. 7, Ho Chi Minh City

Hotline: 1800 6323

Model: **6M21G550/5** Date:

PowerKit Engine Datasheet

Page: 1/4

01/06/21

Ratings

	Gross Engine Output			Net Engine Output				
RPM	PF	RP	ES	SP	PF	RP	ES	SP
	kWm	ВНР	kWm	ВНР	kWm	ВНР	kWm	ВНР
1500	450	604	490	657	436	585	476	638

1 kWm = 1,34102 BHP

Basic data

Engine model		6M21G550/5			
N° of Cylinders / Valves		6 / 24			
Cylinders arrangement		In line			
Bore x Stroke (mm)		127 x 165			
Displacement (L)		12.54			
Thermodynamic Cycle		Diesel 4 stroke			
Mean Piston Speed (m/s)		8.25			
BMEP @ ESP (Bar)		31.26			
Cooling System		Liquid (water + 50% antifreeze)			
Injection System		Direct			
Fuel System		High Pressure Common Rail			
Aspiration		Turbocharged and Aftercooled			
Compression ratio		15.2 : 1			
Flywheel housing		SAE 1			
Flywheel		14"			
N° of teeth on flywheel ring ge	ear	136			
Inertia of flywheel (kg•m²)		2.32			
Inertia of crankshaft (kg•m²)		0.574			
Emission standard		N/A			
Overall Dimensions with radia	ator (Length x Width x Height) (mm)	2032 x 1232 x 1490			
Engine dry weight without radiator and without radiator pipes (kg)1000					
Engine dry weight with radiate	or and radiator pipes (kg)	1190			
Engine wet weight with radiat	or (includes oil, coolant) (kg)	1286,6			

6M21G550/5 Model:

Date:

01/06/21

PowerKit Engine Datasheet

Page: 2/4

AII	IIIt	ake	Sy:	stem	

7 in intake eyetem	
Air intake temperature rise (°C)	≤ 15
Air intake restriction clean filter (mBar)	≤ 35
Air intake restriction dirty filter (mBar)	≤ 70
Recommended air flow @ PRP (m³/min)	33
Recommended air flow @ ESP (m³/min)	34,8
Min. diameter of intake pipe (mm)	100
Aftercooling system	
Aftercooler system type	Air to Air
Max. intake temperature @ 25°C ambient temperature (°C)	55
Max. difference between intake temperature and ambient temperature (°C)	30
Max. intake pressure drop of aftercooler (mBar)	120
Lubrication system	
Oil capacity Low / High (L)	29 / 34
Oil pressure in normal condition idle speed (Bar)	1.3 - 2.5
Oil pressure in normal condition at 1500 Rpm @ PRP (Bar)	3.5 - 5.5
Lowest oil pressure alarm (shutdown) (Bar)	1
Max. oil temperature (°C)	105
Oil flow at 1500 Rpm (L/min)	≥ 180
Oil fuel consumption ratio based on engine fuel consumption data	≤ 0.2 %
Total system capacity (including filters) (L)	38
Heat balance test data (with ambient temperature 30 °C)	
Total heat dissipation @ ESP (kJ/s)	770.4
- Heat Rejection to Jacket Water @ ESP (kJ/s)	187.8
- Heat Rejection to AfterCooler @ ESP (kJ/s)	134.1
- Radiated Heat to Ambient @ ESP (kJ/s)	62.1
- Heat Rejected to Exhaust @ ESP (kJ/s)	386.4
Exhaust system	
Max. exhaust back pressure (mBar)	120
Max. exhaust temperature before turbocharger (°C)	740
Max. exhaust temperature after turbocharger (°C)	580
Exhaust flow @ PRP (m³/min)	102.3
Exhaust flow @ ESP (m³/min)	114.8
Min. diameter of exhaust pipe (mm)	100
Max. bending moment of exhaust gas exit flange (Nm)	19

Model :	6M21G550/5	Date :	01/06/21
Power	·Kit Engine Datasheet	Page :	3 / 4

Cooling system with standard radiator version 2021

System designed for ambient temperature up to (°C) ¹	55
Radiator type	Mechanical
Fan type	Belt driven pusher
Min. inside diameter of coolant outlet pipe (mm)	75
Coolant capacity of radiator and pipes (L)	37
Coolant alarm (shutdown) temperature (°C)	105
Thermostat opening temperature / full open temperature (°C)	76 / 88
Max. additional restriction for external cooling circuit (Bar)	0.23
Coolant capacity of the engine (L)	25
Cooling fan airflow (m³/min)	474
Fan absorbed power (kW)	12
Additional restriction (for reference) - Duct allowance (Pa)	75
Fuel system	
Governor	ECU
Governor steady state speed stability at constant load (ISO 8528-5 Class G3) ²	≤ +/- 0.5 %
Max. restriction at fuel inlet (Bar)	0.5
Max. pressure at fuel inlet (Bar)	1.3
Max. fuel return restriction (Bar)	0.5
Max. fuel inlet temperature (°C)	50
Fuel supply flow (L/hr)	400
Min. internal diameter of inlet pipe (mm)	14
Min. internal diameter of return pipe (mm)	14
Electrical system	
Electrical system voltage (negative to ground) (Vdc)	24
Starter power (kW)	8.5
Battery charger current (A)	
Battery charger absorbed power (kW)	1,96
Max. electric resistance of starting circuit (Ω)	0.002
Min. sectional area of wire (mm²)	
Min. cold start temperature without auxiliary starting device (°C) ³	10
Min. cold start temperature with auxiliary starting device (°C) 3	

- The indicated value is based on the AOT value of 50°C for an engine tested at 100% of the ESP Power, reflecting temperature in an open condition, without an enclosure or container, without any airflow obstruction in the front of the radiator, without air recirculation, with free exhaust gas exit and with the engine thermostatic valve in its full open condition, without a closing plate present. The reference air restriction is equal to 50Pa. For the equivalent ATB (Air-to-Boil) performance in a customer or project basis, please consult Baudouin Application Engineering.
- ² This refers only to the frequency response of the engine and should not be confused with the performance class of the Generator Set, which is subject to additional contributing factors such as alternator selection and control settings.
- ³ Engines used in emergency standby application or applications that require immediate start under load, they must be equipped with coolant heaters. Baudouin recommend heaters installation to be executed by providing constant coolant circulation across all the engine components. Two heaters are required for V-type engines, one per each side.

Model :	6M21G550/5	Date :	01/06/21
Power	Kit Engine Datasheet	Page :	4 / 4

Noise

Diesel engine noise (Acoustic power level) (dB(A))	113.6
Noise - upper side (dB(A))	96.9
Noise - right side (view from flywheel) (dB(A))	
Noise - left side (view from flywheel) (dB(A))	99.1
Noise – front (radiator) side (dB(A))	97.8
Noise – rear (flywheel) side (dB(A))	94.5
Notes:	

- Noise test made at 100% of the ESP power, at 1 mt. distance, on engine without radiator, without cooling fan and without silencer.
- Noise test refers to GB/T 1859 norm: "Reciprocating internal combustion engines. Measurement of emitted airborne noise. b) Engineering method and survey method".

Fuel consumption

1 0.01 0011001111						
Rating	gr/kWh	L/hr 123.1				
100% ESP	211					
100% PRP 204.3 75% PRP 187.3		109.5 75.3				
						50% PRP
25% PRP	207.5	27.8				
	Fuel consumption tolerance + 3 %					

Ratings definitions

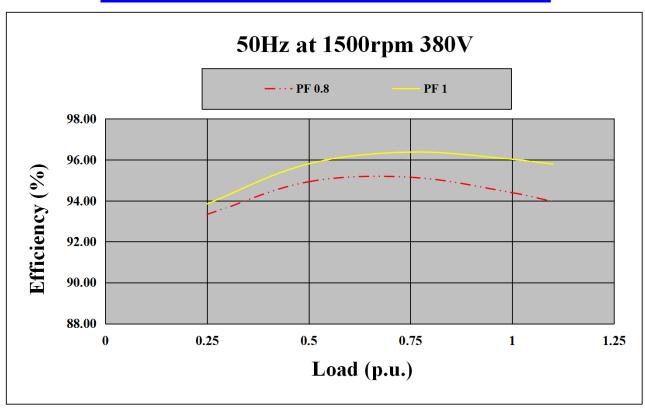
Emergency Standby Power (ESP)

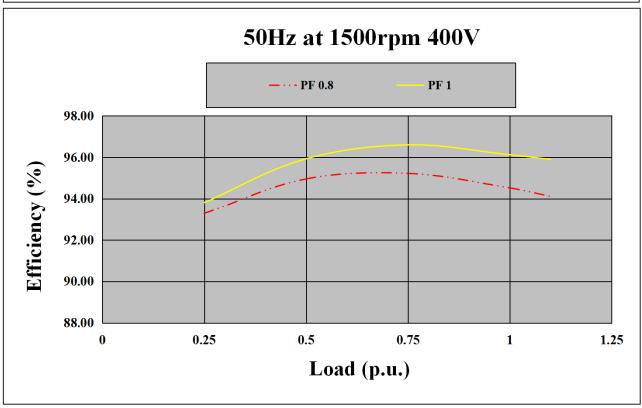
Emergency Standby Power is the maximum power available for a varying load for the duration of a main power network failure. The average load factor over 24 hours of operation should not exceed 70% of the engine's ESP power rating. Typical operational hours of the engine is 200 hours per year, with a maximum usage of 500 hours per year. This includes an annual maximum of 25 hours per year at the ESP power rating. No overload capability is allowed. The engine is not to be used for sustained utility paralleling applications.

Prime Power (PRP)

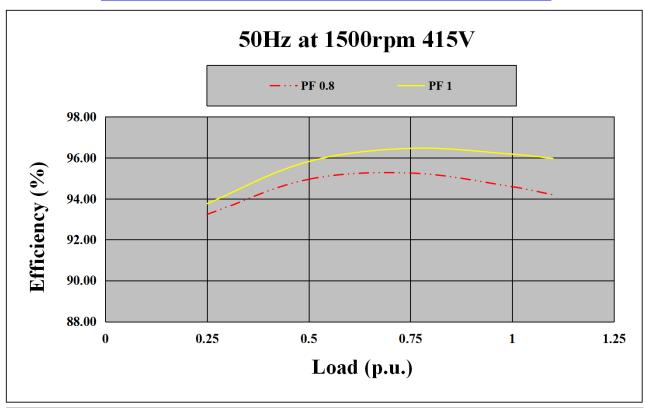
Prime Power is the maximum power available for unlimited hours of usage in a variable load application. The average load factor should not exceed 70% of the engine's PRP power rating during any 24 hour period. An overload capability of 10% is available, however, this is limited to 1 hour within every 12 hour period.

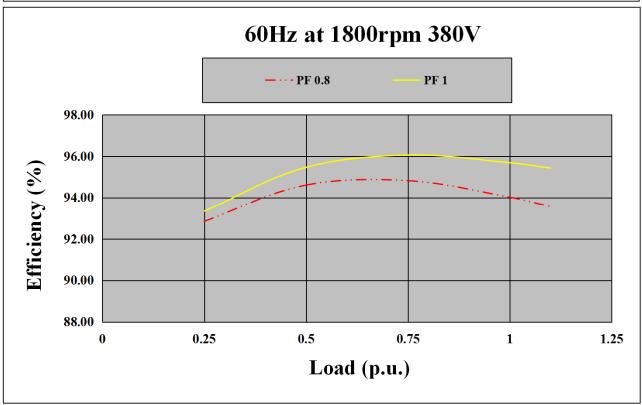
- All ratings are based on operating conditions under ISO 8528-1, ISO 3046, DIN6271. Performance tolerance of ±5%. 1)
- Test conditions: 100 kPa, 25°C air inlet temperature, relative humidity of 30%, with fuel density 0.84 kg/L. Derating may be required 2) for conditions outside these; please contact the factory for details.
- 3) Power output curves are based on the engine operating with fuel system, water pump and lubricating oil pump; not included are battery charging alternator, fan and optional equipment.

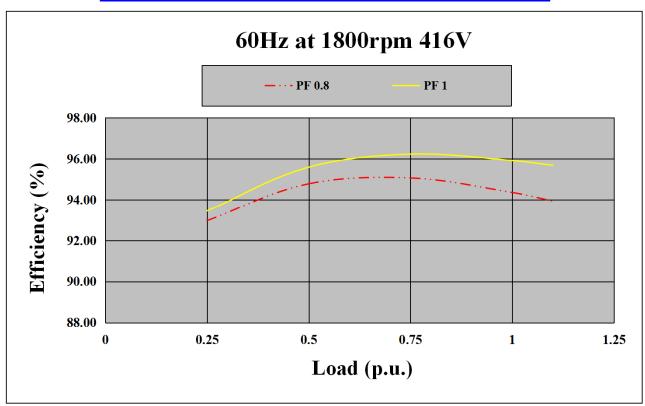


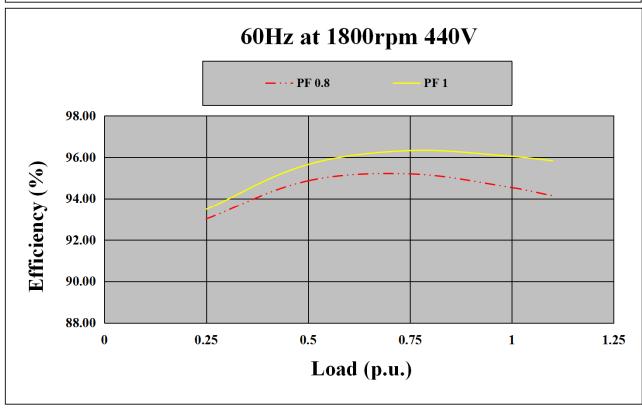

Datasheet For 50Hz @ 1500rpm / 60Hz @ 1800rpm

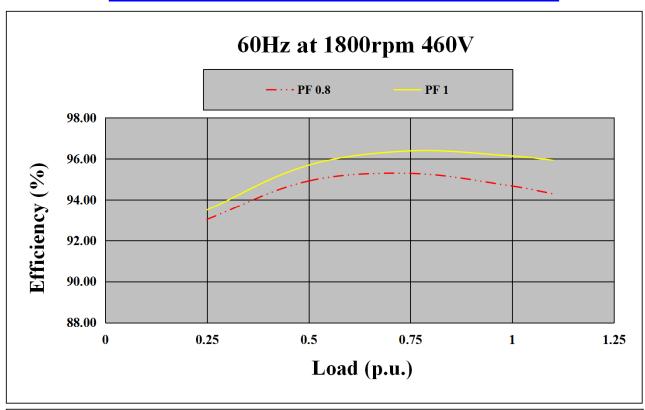
WHA-500-4/0.4

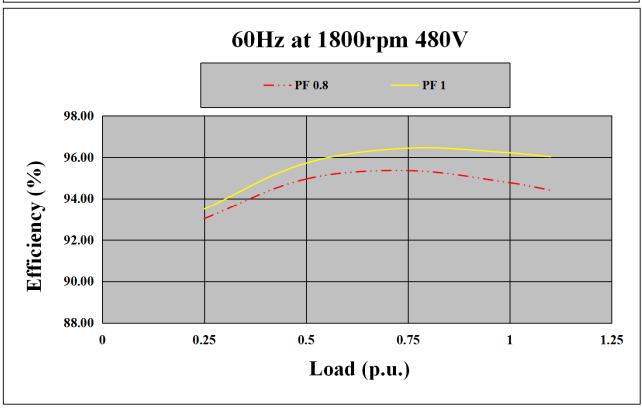

Frequency	Hz	50		60					
Rated capacity (kVA)	S	500	500	500	505	550	590	610	630
Rated power (kW)	P	400	400	400	404	440	472	488	504
Voltage (V)	U	380	400	415	380	416	440	460	480
Short-circuit ratio	Kcc	0.3	0. 36	0. 418	0. 227	0. 276	0. 276	0. 304	0. 343
Reactance		0.0	0.00	0. 110	0.221	0.210	0.210	0.001	0.010
Direct axis synchronous reactance	Xd	4.057	3. 661	3. 401	4. 917	4. 284	4. 284	4. 053	3.844
Direct axis transient reactance saturated	X'd	0.141	0. 127		0. 17	0. 149	0. 149	0. 14	0. 133
Direct axis subtransient reactance saturated		0.127	0. 115	0. 107	0. 154	0. 135	0. 135	0. 127	0. 121
Quadrature axis synchronous reactance	Xq	1.8	1. 624		2. 181	1. 901	1. 901	1. 798	1. 706
Quadrature axis subtransient reactance	X"q	0.187	0. 169	0. 157	0. 227	0. 198	0. 198	0. 187	0. 177
Negative sequence reactance saturated	X2	0.16	0. 14	0. 13	0. 19	0. 17	0. 17	0. 16	0. 15
Zero sequence reactance unsaturated	X0	0.048	0. 044	0. 04	0. 058	0. 051	0. 051	0. 048	0. 046
Time constant	110	0.0.0	0.011	0.01	0.000	0.001	0.001	0.010	0.010
Open circuit time constant	T'd0	2. 45	2. 45	2. 45	2. 45	2. 45	2. 45	2. 45	2.45
Short-circuit transient time constant	T'd	0. 085	0. 085	0. 085	0. 085	0. 085	0. 085	0. 085	0. 085
Subtransient time constant	T"d	0. 002	0.002	0. 002	0.002	0.002	0.002	0. 002	0.002
Armature time constant	Ta	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
No load losses	W	3949	4183	4366	5009	5391	5664	5904	6155
Heat dissipation at full load at Class H	W	23760	23191	22882	25696	26333	27277	27489	27807
Efficiency	-	20100	20131	22002	20000	20000	21211	21103	21001
PF=0.8 Efficiency of 25% load	%	93.31	93.28	93.22	92.84	92.97	93.01	93.03	93.02
50% load	%	94.93	94.95	94.95	94.61	94.78	94.86	94.92	94.95
75% load	%	95.14	95.22	95.25	94.82	95.06	95.20	95.29	95.35
100% load	%	94.39	94.52	94.59	94.02	94.35	94.54	94.67	94.77
110% load	%	93.96	94.11	94.19	93.56	93.93	94.14	94.29	94.41
PF=1 Efficiency of 25% load	%	93.85	93.81	93.76	93.34	93.44	93.48	93.49	93.49
50% load	%	95.80	95.92	95.82	95.46	95.59	95.65	95.69	95.71
75% load	%	96.37	96.59	96.46	96.06	96.23	96.32	96.38	96.43
100% load	%	96.02	96.12	96.17	95.68	95.91	96.04	96.13	96.21
110% load	%	95.78	95.89	95.96	95.42	95.68	95.83	95.93	96.02
No load excitation current	io(A)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Full load excitation current	ic(A)	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2
Full load excitation voltage	uc(V)	62	62	62	62	62	62	62	62
Recovery time	Tr	02	02	02		S	02	02	02
Waveform: TIF	11					:50			
Waveform: THD		No load <3% Non-Distorting Balanced Linear Load <5%							
Waveform: THF		<2%							
Winding pitch		2/3							
Steady state voltage regulation		+/- 1%							
A.V.R. model		EVC600							
Duty		Continuous							
Number of poles		Continuous 4							
Class of insulation		4 H							
Altitude		n ≤1000m							
Rated power factor		≤1000m 0.8							
Excitation		0.8 Brushless							
Stator winding		Brusniess 6ends							
Rotor		With damping cage							
Overload	%	110% rated load for 1 hour							
Stator winding resistance (20°C)	ohm	0.00623							
Rotor winding resistance (20°C)	ohm								
Exciter Stator resistance (20°C)	ohm	0.7858 10.2							
Exciter Rotor resistance (20°C)	ohm					506			
Cooling air requirement	m3/min		540		0.0	500	(5.0		
Method of cooling	1113/111111		54.8		IC	01	65.8		
						. 01)℃			
Ambient temperature Sense of rotation									
Type of construction		Clockwise-DE							
• •		1 Bearing or 2 Bearings IP21 or IP23							
Degree of protection / enclosure Maximum overspeed		2250 rpm 2minutes							
iviaxiiiuiii oveispeed				4	2230 ipin	∠IIIIIut	ES		

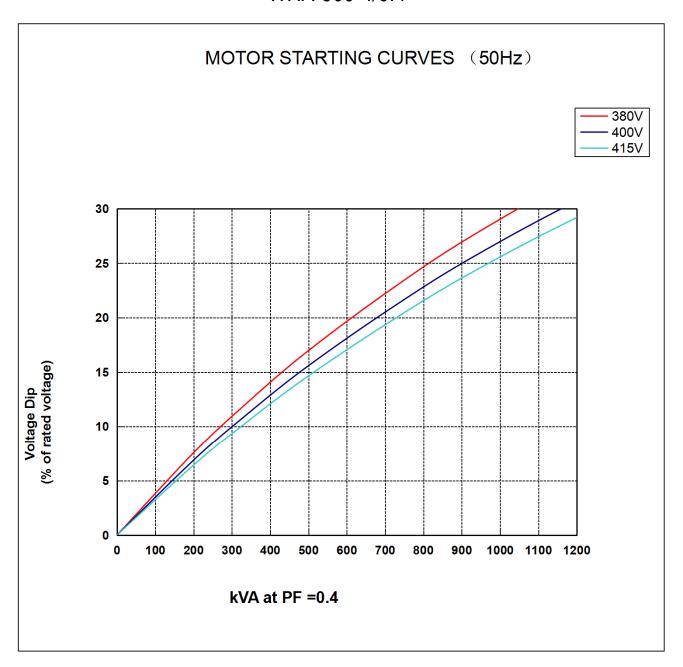

THREE PHASE EFFICIENCY CURVES



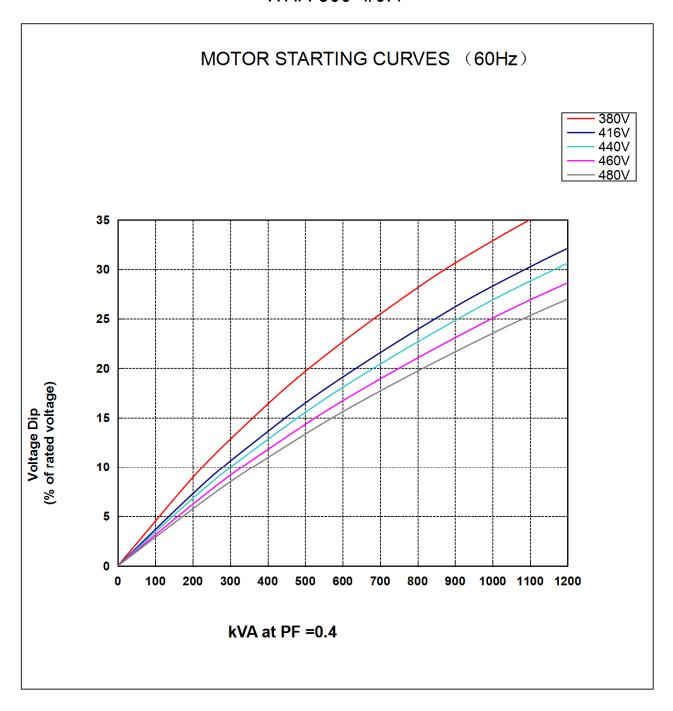

THREE PHASE EFFICIENCY CURVES




THREE PHASE EFFICIENCY CURVES



THREE PHASE EFFICIENCY CURVES



THREE PHASE SYNCHRONROUS GENERATOR WHA-500-4/0.4

WHA-500-4/0.4

DSE7310/20 MKII

AUTO START & AUTO MAINS FAILURE CONTROL MODULES

FEATURES

The DSE7310 MKII is an Auto Start Control Module and the DSE7320 MKII is an Auto Mains (Utility) Failure Control Module suitable for a wide variety of single, diesel or gas, gen-set applications.

Monitoring an extensive number of engine parameters, the modules will display warnings, shutdown and engine status information on the back-lit LCD screen, illuminated LEDs, remote PC and via SMS text alerts (with external modem).

The DSE7320 MKII will also monitor the mains (utility) supply. The modules include USB, RS232 and RS485 ports as well as dedicated DSENet® terminals for system expansion.

Both modules are compatible with electronic (CAN) and non-electronic (magnetic pick-up/alternator sensing) engines and offer an extensive number of flexible inputs, outputs and extensive engine protections so the system can be easily adapted to meet the most demanding industry requirements.

The extensive list of features includes enhanced event and performance monitoring, remote communications & PLC functionality. Dual mutual standby is now available on both the DSE7310 MKII & DSE7320 MKII using RS232 or RS485 communications. This provides for a simpler and more convenient installation with more advanced features such as true engine hours balancing.

The modules can be easily configured using the DSE Configuration Suite PC software. Selected front panel editing is also available

ENVIRONMENTAL TESTING STANDARDS

ELECTRO-MAGNETIC COMPATIBILITY

BS EN 61000-6-2 EMC Generic Immunity Standard for the Industrial Environment BS EN 61000-6-4 EMC Generic Emission Standard for the Industrial Environment

ELECTRICAL SAFETY

BS EN 60950 Safety of Information Technology Equipment, including Electrical Business Equipment

TEMPERATURE

BS EN 60068-2-1 Ab/Ae Cold Test -30 °C BS EN 60068-2-2 Bb/Be Dry Heat +70 °C

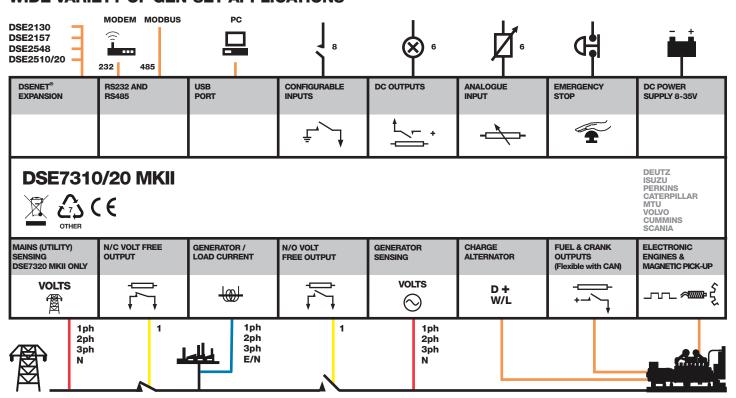
VIBRATION

BS EN 60068-2-6 Ten sweeps in each of three major axes 5 Hz to 8 Hz at +/-7.5 mm, 8 Hz to 500 Hz at 2 gn

HUMIDITY

BS EN 60068-2-30 Db Damp Heat Cyclic 20/55 °C at 95% RH 48 Hours BS EN 60068-2-78 Cab Damp Heat Static 40 °C at 93% RH 48 Hours

SHOCK


BS EN 60068-2-27 Three shocks in each of three major axes 15 gn in 11 mS

DEGREES OF PROTECTION PROVIDED BY ENCLOSURES

BS EN 60529

IP65 - Front of module when installed into the control panel with the supplied sealing gasket.

COMPREHENSIVE FEATURE LIST TO SUIT A WIDE VARIETY OF GEN-SET APPLICATIONS

DSE7310/20 MKII

AUTO START & AUTO MAINS FAILURE CONTROL MODULES

FEATURES

DSE7310 MKII

KEY FEATURES

- 4-Line back-lit LCD text display
- Multiple Display Languages
- Five key menu navigation
- LCD alarm indication
- Heated display option available
- Customisable power-up text and images
- DSENet expansion compatibility
- Data logging facility
- Internal PLC editor
- Protections disable feature
- Fully configurable via PC using USB. RS232 & RS485 communication
- · Front panel configuration with PIN protection
- Power save mode
- 3 phase generator sensing and protection
- 3 phase mains (utility) sensing and protection (DSE7320 MKII
- Automatic load transfer control (DSE7320 MKII only)
- Generator current and power monitoring (kW, kvar, kVA, pf)
- Mains current and power monitoring (kW, kvar, kVA, pf) (DSE7320 MKII only)
- kW and kvar overload and reverse power alarms
- Over current protection
- Unbalanced load protection
- Independent earth fault protection
- Breaker control via fascia buttons

DSE7320 MKII

- · Fuel and start outputs configurable when using CAN
- 6 configurable DC outputs
- 2 configurable volt-free relay outputs
- 6 configurable analogue/digital inputs
- Support for 0 V to 10 V & 4 mA to 20 mA sensors
- 8 configurable digital inputs
- Configurable 5 stage dummy load and load shedding outputs
- CAN, MPU and alternator frequency speed sensing in one variant
- Real time clock
- Manual and automatic fuel pump control
- Engine pre-heat and post-heat functions
- · Engine run-time scheduler
- Engine idle control for starting & stopping
- Fuel usage monitor and low fuel level alarms
- Simultaneous use of RS232 and RS485 communication ports
- True dual mutual standby using RS232 or RS485 for accurate engine hours balancing.
- MODBUS RTU support with configurable MODBUS pages.
- Advanced SMS messaging (additional external modem required)
- Start & stop capability via SMS messaging

- · 3 configurable maintenance
- Compatible with a wide range of CAN engines, including tier 4 engine support
- Uses DSE Configuration Suite PC Software for simplified configuration
- Licence-free PC software
- IP65 rating (with supplied gasket) offers increased resistance to water ingress
- Modules can be integrated into building management systems (BMS) using MODBUS RTU

KEY BENEFITS

- Automatically transfers between mains (utility) and generator (DSE7320 MKII only) for convenience.
- Hours counter provides accurate information for monitoring and maintenance periods
- User-friendly set-up and button layout for ease of use
- Multiple parameters are monitored & displayed simultaneously for full visibility
- The module can be configured to suit a wide range of applications for user flexibility
- PLC editor allows user configurable functions to meet user specific application requirements.

PART NO'S

053-181

057-253

057-243

SPECIFICATION

CONTINUOUS VOLTAGE RATING

8 V to 35 V Continuous 5 V for upto 1 minute

CRANKING DROPOUTS

Able to survive 0 V for 100 mS, providing supply was at least 10 V before dropout and supply recovers to 5 V. This is achieved without the need for internal batteries. LEDs and backlight will not be maintained during cranking.

MAXIMUM OPERATING CURRENT

MAXIMUM STANDBY CURRENT

330 mA at 12 V, 160 mA at 24 V

CHARGE FAIL/EXCITATION RANGE

GENERATOR & MAINS (UTILITY)

VOLTAGE RANGE

15 V to 415 V AC (Ph to N) 26 V to 719 V AC (Ph to Ph)

FREQUENCY RANGE

MAGNETIC PICKUP VOLTAGE RANGE

+/- 0.5 V to 70 \

FREQUENCY RANGE

10,000 Hz (max)

INPUTS DIGITAL INPUTS A TO H

ANALOGUE INPUTS A & F

Configurable as: Negative switching digital input 0 V to 10 V sensor 4 mA to 20 mA sensor Resistive sensor

ANALOGUE INPUTS B. C. D & E

Configurable as: Negative switching digital input Resistive sensor

OUTPUT A & B (FUEL & START) 15 A DC at supply voltage

OUTPUTS C & D

8 A AC at 250 V AC (Volt-free)

AUXILIARY OUTPUTS E, F, G, H, I & J

2 A DC at supply voltage

DIMENSIONS

OVERALL

245 mm x 184 mm x 51 mm 9.6" x 7.2" x 2.0"

PANEL CUT-OUT

220 mm x 160 mm 87" x 63"

MAXIMUM PANEL THICKNESS

STORAGE TEMPERATURE RANGE

-40 °F to +185 °F

OPERATING TEMPERATURE RANGE -30°C to +70°C

-22 °F to +158 °F

HEATED DISPLAY VARIANT

-40 °C to +70 °C -40 °F to +158 °F

RELATED MATERIALS

TITLE

DSE7310 MKII & DSE7320 MKII Installation Instructions DSE7310 MKII & DSE7320 MKII Operator Manual DSE7310 MKII & DSE7320 MKII Configuration Suite PC Manual

DEEP SEA ELECTRONICS PLC UK

Highfield House, Hunmanby Industrial Estate, Hunmanby YO14 0PH **TELEPHONE** +44 (0) 1723 890099 **FACSIMILE** +44 (0) 1723 893303 EMAIL sales@deepseaplc.com WEBSITE www.deepseaplc.com

DEEP SEA ELECTRONICS INC USA

3230 Williams Avenue, Rockford, IL 61101-2668 USA TELEPHONE +1 (815) 316 8706 FACSIMILE +1 (815) 316 8708 EMAIL sales@deepseausa.com WEBSITE www.deepseausa.com